Spatial And Spatio Temporal Epidemiology

This handbook focuses on the enormous literature applying statistical methodology and modelling to environmental and ecological processes. The 21st century statistics community has become increasingly interdisciplinary, bringing a large collection of modern tools to all areas of application in environmental processes. In addition, the environmental community has substantially increased its scope of data collection including observational data, satellite-derived data, and computer model output. The resultant impact in this latter community has been substantial; no longer are simple regression and analysis of variance methods adequate. The contribution of this handbook is to assemble a state-of-the-art view of this interface. Features: An internationally regarded editorial team. A distinguished collection of contributors. A thoroughly contemporary treatment of a substantial interdisciplinary interface. Written to engage both statisticians as well as quantitative environmental researchers. 34 chapters covering methodology, ecological processes, environmental exposure, and statistical methods in climate science.

Since the publication of the second edition, many new Bayesian tools and methods have been developed for space-time data analysis, the predictive modeling of health outcomes, and other spatial bio-statistical areas. Exploring these new developments, Bayesian Disease Mapping: Hierarchical Modeling in Spatial Epidemiology, Third Edition provides an up-to-date, cohesive account of the full range of Bayesian disease mapping methods and applications. In addition to the new material, the book also covers more conventional areas such as relative risk estimation, clustering, spatial survival analysis, and longitudinal analysis. After an introduction to Bayesian inference, computation, and model assessment, the text focuses on important themes, including disease map reconstruction, cluster detection, regression and ecological analysis, putative hazard modeling, analysis of multiple scales and multiple diseases, spatial survival and longitudinal studies, spatiotemporal methods, and map surveillance. It shows how Bayesian disease mapping can yield significant insights into georeferenced health data. The target audience for this text is public health specialists, epidemiologists, and biostatisticians who need to work with geo-referenced health data.

Presenting current research on spatial epidemiology, this book covers topics such as exposure, chronic disease, infectious disease, accessibility to health care settings and new methods in Geographical Information Science and Systems. For epidemiologists, and for the management and administration of health care settings, it is critical to understand the spatial dynamics of disease. Spatial epidemiology relies increasingly on new methodologies, such as clustering algorithms, visualization and space-time modelling, the domain of Geographic Information Science. Implementation of those techniques appears at an increasing pace in commercial Geographic Information Systems, alongside more traditional techniques that are already part of such systems. This book provides the latest methods in GI Science and their use in health related problems. The proper management of geographic data can provide assistance to a number of different sectors within society. As such, it is imperative to continue advancing research for spatial data analysis. The Handbook of Research on Geographic Information Systems Applications and Advancements presents a thorough overview of the latest developments in effective management techniques for collecting, processing, analyzing, and utilizing geographical data and information. Highlighting theoretical frameworks and relevant applications, this book is an ideal reference source for researchers, academics, professionals, and students actively involved in the field of geographic information systems.

This book provides a comprehensive but concise overview on the economically important emerging cattle pox virus derived Lumpy Skin Disease, including the characteristics of causative agent, description of clinical signs in cattle, pathology and histopathology, immunity, geographical distribution, epidemiology and transmission pathways, control and eradication of the disease. In addition the recent developments in vaccination, mathematical modeling and risk assessment are discussed. Lumpy Skin Disease currently spreads aggressively across the Middle and Near East. The first incursion to the European Union territory occurred in Greece in autumn 2015. The book targets clinicians and field veterinarians in Lumpy Skin Disease affected regions and veterinary students in veterinary medicine and virology.

Following the events of 9/11 and in the current world climate, there is increasing concern of the impact of potential bioterrorism attacks. Spatial surveillance systems are used to detect changes in public health data, and alert us to possible outbreaks of disease, either from natural resources or from bioterrorism attacks. Statistical methods play a key role in spatial surveillance, as they are used to identify changes in data, and build models of that data in order to make predictions about future activity. This book is the first to provide an overview of all the current key methods in spatial surveillance, and present them in an accessible form, suitable for the public health professional. It features an abundance of examples using real data, highlighting the practical application of the methodology. It is edited and authored by leading researchers and practitioners in spatial surveillance methods. Provides an overview of the current key methods in spatial surveillance of public health data. Includes coverage of both single and multiple disease surveillance. Covers all of the key topics, including syndromic surveillance, spatial cluster detection, and Bayesian data mining. Geospatial health data are essential to inform public health and policy. These data can be used to quantify disease burden, understand geographic and temporal patterns, identify risk factors, and measure inequalities. Geospatial Health Data: Modeling and Visualization with R-INLA and Shiny describes spatial and spatio-temporal statistical methods and visualization techniques to analyze georeferenced health data in R. The book covers the following topics: Manipulate and transform point, areal, and raster data, Bayesian hierarchical models for disease mapping using areal and geostatistical data, Fit and interpret spatial and spatio-temporal models with the Integrated Nested Laplace Approximations (INLA) and the Stochastic Partial Differential Equation (SPDE) approaches, Create interactive and static visualizations such as disease maps and time plots, Reproducible R Markdown reports, interactive dashboards, and Shiny web applications that facilitate the communication of insights to collaborators and policy makers. The book features fully reproducible examples of several disease and environmental applications using real-world data such as malaria in The Gambia, cancer in Scotland and USA, and air pollution in Spain. Examples in the book focus on health applications, but the approaches covered are also applicable to other fields that use georeferenced data including epidemiology, ecology, demography or criminology. The book provides clear descriptions of the R code for data importing.
innovative presentation of the combination of Bayesian methodology and spatial statistics. The authors combine an introduction to Bayesian theory and methodology with a focus on the spatial and spatio-temporal models used within the Bayesian framework and a series of practical examples which allow the reader to link the statistical theory presented to real data problems. The numerous examples from the fields of epidemiology, biostatistics and social science all are coded in the R package R-INLA, which has proven to be a valid alternative to the commonly used Markov Chain Monte Carlo simulations.

Statistical Methods for Spatial and Spatio-Temporal Data Analysis provides a complete range of spatio-temporal covariance functions and discusses ways of constructing them. This book is a unified approach to modeling spatial and spatio-temporal data together with significant developments in statistical methodology with applications in R. This book includes: Methods for selecting valid covariance functions from the empirical counterparts that overcome the existing limitations of the traditional methods. The most innovative developments in the different steps of the kriging process. An up-to-date account of strategies for dealing with data evolving in space and time. An accompanying website featuring R code and examples.

Spatial-temporal Analysis of Extreme Hydrological Events offers an extensive view of the experiences and applications of the latest developments and methodologies for analyzing and understanding extreme environmental and hydrological events. The book addresses the topic using spatio-temporal methods, such as space-time geostatistics, machine learning, statistical theory, hydrological modelling, neural network and evolutionary algorithms. This important resource for both hydrologists and statisticians interested in the framework of spatial and temporal analysis of hydrological events will provide users with an enhanced understanding of the relationship between magnitude, dynamics and the probability of extreme hydrological events. Presents spatio-temporal processes, including multivariate dynamic modelling Provides varying methodological approaches, giving the readers multiple hydrological modelling information to use in their work.

Includes a variety of case studies making the context of the book relatable to everyday working situations.

Spatial and Spatio-Temporal Geostatistical Modeling and Kriging
Spatiotemporal Analysis of Extreme Hydrological Events
Spatial and Spatio-temporal Bayesian Models with R - INLA
Statistical Methods in Spatial Epidemiology
Spatial Analysis And GIS
Airs, Waters, Places
Principles, Methods and Tools of Spatial Analysis
Spatial and Syndromic Surveillance for Public Health
Hierarchical Modeling and Analysis for Spatial Data
Applying Graph Theory in Ecological Research

Statistical methods in spatial epidemiology is the description and analysis of the geographical distribution of disease. It is more important now than ever, with modern threats such as bio-terrorism making such analysis even more complex. This second edition of Statistical Methods in Spatial Epidemiology is updated and expanded to offer a complete coverage of the analysis and application of spatial statistical methods. The book is divided into two main sections: Part I introduces basic definitions and terminology, along with map construction and some basic models. This is expanded upon in Part II by applying this knowledge to the fundamental problems within spatial epidemiology, such as disease mapping, ecological analysis, disease clustering, bio-terrorism, space-time analysis, surveillance and infectious disease modelling. Provides a comprehensive overview of the main statistical methods used in spatial epidemiology. Updated to include a new emphasis on bio-terrorism and disease surveillance. Emphasizes the importance of space-time modelling and outlines the practical application of the method. Discusses the wide range of software available for analyzing spatial data, including WinBUGS, SaTScan and R, and features an accompanying website hosting related software. Contains numerous data sets, each representing a different approach to the analysis, and provides an insight into various modelling techniques. This text is primarily aimed at medical statisticians, researchers and practitioners from public health and epidemiology. It is also suitable for postgraduate students of statistics and epidemiology, as well as professionals working in government agencies.

Containing method descriptions and step-by-step procedures, the Spatial Epidemiological Approaches in Disease Mapping and Analysis equips readers with skills to prepare health-related data in the proper format, process these data using relevant functions and software, and display the results as mapped or statistical summaries. Describing the wide range of available methods and key GIS concepts for spatial epidemiology, this book illustrates the utilities of the software using real-world data. Additional topics include geographic data models, address matching, geostatistical analysis, universal kriging, point pattern analysis, kernel density, spatio-temporal display, and disease surveillance.

Offers an in-depth report on advanced statistical tools for public health disease surveillance, which is the result of a prestigious World Health Organisation (WHO) and EU Biomedical programme initiative. Traditionally, the role of public health disease surveillance has been to identify and evaluate morbidity and mortality but increasingly, more sophisticated methods are being applied as the authorities extend their studies to include control and prevention of disease. This book brings together leading experts to discuss complex methodologies for the statistical evaluation of disease mapping and risk assessment. It includes a broad variety of statistical techniques and where appropriate, examples are included on topical issues such as the analysis of putative health hazards. For easy reference the text is presented in five distinct sections, each with an introductory review: Disease Mapping * Clustering of Disease * Ecological Analysis * Risk Assessment for Putative Sources of Hazard * Public Health Applications and Case Studies Representative of the most pertinent issues within disease surveillance and mapping, this book will provide an accessible overview for statisticians and epidemiologists.

Among the many uses of hierarchical modeling, their application to the statistical analysis of spatial and spatio-temporal data from areas such as epidemiology And environmental science has proven particularly fruitful. Yet to date, the few books that address the subject have been either too narrowly focused on specific aspects of spatial analysis, While mapped data provide a common ground for discussions between the public, the media, regulatory agencies, and public health researchers, the analysis of spatially referenced data has experienced a phenomenal growth over the last two decades, thanks in part to the development of geographical information systems (GIS). This is the first thorough overview to integrate spatial statistics with data management and the display.
capabilities of GIS. It describes methods for assessing the likelihood of observed patterns and quantifying the link between exposures and outcomes in spatially correlated data. This introductory text is designed to serve as both an introduction for the novice and a reference for practitioners in the field. Requires only minimal background in public health and only some knowledge of statistics through multiple regression. Touches upon some advanced topics, such as random effects, hierarchical models and spatial point processes, but does not require prior exposure. Includes lavish use of figures/illustrations throughout the volume as well as analyses of several data sets (in the form of "data breaks").

Written by a prominent statistician and author, the first edition of this bestseller broke new ground in the then emerging subject of spatial statistics with its coverage of spatial point patterns. Retaining all the material from the second edition and adding substantial new material, Statistical Analysis of Spatial and Spatio-Temporal Point Patterns, Third Edition presents models and statistical methods for analyzing spatially referenced point process data. Reflected in the title, this third edition now covers spatio-temporal point patterns. It explores the methodological developments from the last decade along with diverse applications that use spatio-temporally indexed data. Practical examples illustrate how the methods are applied to analyze spatial data in the life sciences. This edition also incorporates the use of R through several packages dedicated to the analysis of spatial point process data. Sample R code and data sets are available on the author’s website.

"Airs, Waters, Places" by Hippocrates (translated by Francis Adams). Published by Good Press. Good Press publishes a wide range of titles that encompasses every genre. From well-known classics & literary fiction and non-fiction to forgotten—yet undiscovered gems—of world literature, we issue the books that need to be read. Each Good Press edition has been meticulously edited and formatted to boost readability for all e-readers and devices. Our goal is to produce eBooks that are user-friendly and accessible to everyone in a high-quality digital format.

This book clearly describes the many applications of graph theory to ecological questions, providing instruction and encouragement to researchers.

Under the Weather

Epidemiology and Geography

Spatial Cluster Modelling

Statistical Analysis of Spatial and Spatio-Temporal Point Patterns, Third Edition

Geographies of Health, Disease and Well-being

Lumpy Skin Disease

Handbook of Environmental and Ecological Statistics

Spatio-Temporal Methods in Environmental Epidemiology

Geospatial Health Data

Spatial Analysis in Epidemiology

Progressively more and more attention has been paid to how location affects health outcomes. The area of disease mapping focusses on these problems, and the Bayesian paradigm has a major role to play in the understanding of the complex interplay of context and individual predisposition in such studies of disease. Using R for Bayesian Spatial and Spatio-Temporal Health Modeling provides a major resource for those interested in applying Bayesian methodology in small area health data studies.

Features: Review of R graphics relevant to spatial health data Overview of Bayesian methods and Bayesian hierarchical modeling as applied to spatial data Bayesian Computation and goodness-of-fit Review of basic Bayesian disease mapping models Spatio-temporal modeling with MCMC and INLA Special topics include multivariate models, survival analysis, missing data, measurement error, variable selection, individual event modeling, and infectious disease modeling Software for fitting models based on BRugs, Nimble, CARBayes and INLA Provides code relevant to fitting all examples throughout the book at a supplementary website. The book fills a void in the literature and available software, providing a crucial link for students and professionals alike to engage in the analysis of spatial and spatio-temporal health data from a Bayesian perspective using R. The book emphasizes the use of MCMC via Nimble, BRugs, and CARBA yes, but also includes INLA for comparative purposes. In addition, a wide range of packages useful in the analysis of geo-referenced spatial data are employed and code is provided. It will likely become a key reference for researchers and students from biostatistics, epidemiology, public health, and environmental science.

Research has generated a number of advances in methods for spatial cluster modelling in recent years, particularly in the area of Bayesian cluster modelling. A long with these advances has come an explosion of interest in the potential applications of this work, especially in epidemiology and genome research. In one integrated volume, this book reviews the state-of-the-art in spatial clustering and spatial cluster modelling, bringing together research and applications previously scattered throughout the literature.

It begins with an overview of the field, then presents a series of chapters that illuminate the nature and purpose of cluster modelling within different application areas, including astrophysics, epidemiology, ecology, and imaging. The focus then shifts to methods with disease mapping on point and object process modelling, perfect sampling of cluster processes, partitioning in space and space-time, spatial and spatio-temporal process modelling, nonparametric methods for clustering, and spatio-temporal cluster modelling. Many figures, some in full color, complement the text, and a single section of references cited makes it easy to locate source material. Leading specialists in the field of cluster modelling authored each chapter, and an introduction by the editors to each chapter provides a cohesion not typically found in contributed works. Spatial Cluster Modelling thus offers a singular opportunity to explore this exciting new field, understand its techniques, and apply them in your own research.

Spatiotemporal Analysis of Air Pollution and Its Application in Public Health reviews, in detail, the tools needed to understand the spatial temporal distribution and trends of air pollution in the atmosphere, including how this information can be tied into the diverse amount of public health data available using accurate GIS techniques. By utilizing GIS to monitor, analyze and visualize air pollution problems, it has proven to not only be the most powerful, accurate and flexible way to understand the atmosphere, but also a great way to understand the impact air pollution has in diverse populations. This book is essential reading for novices and experts in atmospheric science, geography and any allied fields investigating air pollution.

Introduces readers to the benefits and uses of geo-spatiotemporal analyses of big data to reveal new and greater understanding of the intersection of air pollution and health. Ties in machine learning to improve speed and efficacy of data models includes developing visualizations, historical data, and real-time air pollution in large geographic areas. Disease Mapping: From Foundations to Multidimensional Modelling guides the reader from the basics of disease mapping to the most advanced topics in this field. A multidimensional framework is offered that makes possible the joint modeling of several risks corresponding to combinations of several factors, including age group, time period, disease, etc. Although theory will be covered, the applied component will be equally as important with lots of practical examples offered. Features: Discusses the very latest developments on multivariate and multidimensional mapping. Gives a single state-of-the-art framework that unifies most of the previously proposed disease mapping approaches. Balances epidemiological and statistical points-of-view. Requires no previous knowledge of disease mapping. Includes practical sessions at the end of each chapter with WinBUGS/INLA and real world datasets. Supplies R code for the examples in the book so that they can be reproduced by the reader.

About the Authors: Miguel A.
Martinez Beneite has spent his whole career working as a statistician for public health services, first at the epidemiology unit of the València (Spain) regional health administration and later as a researcher at the public health division of FISA BIO, a regional bio-

sanitary research center. He has been also the Bayesian Hierarchical Models professor for several seasons at the University of València Biostatistics Master. Paloma Botella Rocamora has spent most of her professional career in academia although she now works as a statistician for the epidemiology unit of the València regional health administration. Most of her research has been devoted to developing and applying disease mapping models to real data, although her work as a statistician in an epidemiology unit makes her develop and apply statistical methods to health data, in general.

Winner of the 2013 DeGroot Prize. A state-of-the-art presentation of spatio-temporal processes, bridging classic ideas with modern hierarchical statistical modelling concepts and the latest computational methods. Noel Cressie and Christopher K. Wikle, are also winners of the 2011 PROSE Award in the Mathematics category, for the book “Statistics for Spatio-Temporal Data” (2011), published by John Wiley and Sons. (The PROSE awards, for Professional and Scholarly Excellence, are given by the Association of American Publishers, the national trade association of the U.S. book publishing industry.) Statistics for Spatio-Temporal Data has now been reprinted with small corrections to the text and bibliography. The overall content and pagination of the new printing remains the same; the difference comes in the form of corrections to typographical errors, editing of incomplete and missing references, and some updated spatio-temporal implementations. From understanding environmental processes and climate trends to developing new technologies for mapping public-health data and the spread of invasive species, there is a high demand for statistical analyses of data that take spatial, temporal, and spatio-temporal information into account. Statistics for Spatio-Temporal Data presents a systematic approach to key quantitative techniques that incorporate the latest advances in statistical computing as well as hierarchical, particularly Bayesian, statistical modeling, with an emphasis on dynamical spatio-temporal models. Cressie and Wikle supply a unique perspective that incorporates ideas from the areas of time series and spatial statistics as well as stochastic processes. Beginning with separatetreatments of temporal data and spatial data, the book combines these concepts to discuss spatio-temporal statistical methods for understanding complex processes. Topics of coverage include: Exploratory methods for spatio-temporal data, including visualization, spectral analysis, empirical orthogonal function analysis, and LISA’s Spatio-temporal covariance functions, spatio-temporal kriging, and time series of spatial processes. Development of hierarchical dynamical spatio-temporal models (DSTMs), with discussion of linear and nonlinear DSTMs and computational algorithms for their implementation. Quantifying and exploring spatio-temporal variability in scientific applications, including case studies based on real-world environmental data. Throughout the book, interesting applications demonstrate the relevance of the presented concepts. Vivid, full-color graphics emphasize the visual nature of the topic, and a related FTP site contains supplementary material. Statistics for Spatio-Temporal Data is an excellent book for a graduate-level course on spatio-temporal statistics. It is also a valuable reference for researchers and practitioners in the fields of applied mathematics, engineering, and the environmental and health sciences. The world is becoming increasingly complex, with larger quantities of data available to be analyzed. It so happens that much of these “big data” that are available are spatio-temporal in nature, meaning that they can be indexed by their spatiallocations and time stamps. Spatio-Temporal Statistics with R provides an accessible introduction to statistical analysis of spatio-temporal data, with hands-on applications of the statistical methods using R Labs found at the end of each chapter. The book: Gives a step-by-step approach to analyzing spatio-temporal data, starting with visualization, then statistical modeling, with an emphasis on hierarchical statistical models and basis function expansions, and finishing with model evaluation. Provides a gradual entry to the methodological aspects of spatio-temporal statistics. Provides broad coverage of using R as well as “R Tips” throughout. Features detailed examples and applications in end-of-chapter Labs. Features “Technical Notes” throughout to provide additional technical detail where relevant. Supplemented by a website featuring the associated R package, data, reviews, errata, a discussion forum, and more. The book fills a void in the literature and available software, providing a bridge for students and researchers alike who wish to learn the basics of spatio-temporal statistics. It is written in an informal style and functions as a down-to-earth introduction to the subject. Any reader familiar with calculus-based probability and statistics, and who is comfortable with basic matrix-algebra representations of statistical models, would find this book easy to follow. The goal is to give as many people as possible the tools and confidence to analyze spatio-temporal data.

The Wiley Classics Library consists of selected books that have been made more accessible to consumers in an effort to increase global appeal and general circulation. With these new unabridged softcover volumes, Wiley hopes to extend the lives of these works by making them available to future generations of statisticians, mathematicians, and scientists. Spatial statistics — analyzing spatial data through statistical models — has proven exceptionally versatile, encompassing problems ranging from the microscopic to the astronomical. However, for the scientist and engineer faced only with scattered and uneven treatments of the subject in the scientific literature, learning how to make practical use of spatial statistics in day-to-day analytical work is very difficult. Designed exclusively for scientists eager to tap into the enormous potential of this analytical tool and upgrade their range of technical skills, Statistics for Spatio-Temporal Data is a comprehensive, single-source guide to both the theory and applied aspects of spatial statistical methods. The hard-cover edition was hailed by Mathematical Reviews as an “excellent book which will become a basic reference.” This paper-back edition of the 1993 edition, is designed to meet the many challenging tasks facing the statistician and engineer. Concentrating on the three areas of geostatistical data, lattice data, and point patterns, the book sheds light on the link between data and model, revealing how design, inference, and diagnostics are an outgrowth of that link. It then explores new methods to reveal just how spatial statistical models can be used to solve important problems in a host of areas in science and engineering. Discussion includes: Exploratory spatial data analysis Spectral theory for stationary processes Spatial scale Simulation methods for spatial processes Spatial bootstrapping Statistical image analysis and remote sensing Computational aspects of model fitting Application of models to disease mapping Designed to accommodate the practical needs of the professional, it features a unified and common notation for its subject as well as many detailed examples woven into the text, numerous illustrations (including graphs that illuminate the theory discussed) and over 1,000 references. Fully balancing theory with applications, Statistics for Spatio-Temporal Data, Revised Edition is an exceptionally clear guide on making optimal use of one of the ascendant analytical tools of the decade, one that has begun to capture the imagination of professionals in biology, earth science, civil, electrical, and agricultural engineering, geography, epidemiology, and ecology. Geographic information systems represent an exciting and rapidly expanding technology via which spatial data may be captured, stored, retrieved, displayed, manipulated and analyzed. Applications of this technology include detailed inventories of land use parcels. Spatial patterns of disease, geodemographics, environmental management and macroscale inventories of global resources. The impetus for this book is the relative lack of research into the integration of spatial analysis and GIS, and the potential benefits in developing such an integration. From a GIS perspective, there is an increasing demand for systems that do something other than display and organize data. From a spatial analytical perspective, there are advantages to linking statistical methods and mathematical models to the database and display capabilities of a GIS. Although the GIS may not be absolutely necessary for spatial analysis, it can facilitate such an analysis and moreover provide insights that might otherwise have been
missed. The contributions to the book tell us where we are and where we ought to be going. It suggests that the integration of spatial analysis and GIS will stimulate interest in quantitative spatial science, particularly exploratory and visual types of analysis and represents a unique statement of the state-of-the-art issues in integration and interface.

Using R for Bayesian Spatial and Spatio-Temporal Health Modeling

Spatial-Temporal Statistics with R

From Foundations to Multidimensional Modeling

Spatial Analysis in Health Geography

Theory, Models, and Simulation

Recent Advances in Theory and Method

Statistics for Spatial Data

Modeling and Visualization with R-INLA and Shiny

Space, Place and Tobacco

Hierarchical Modeling in Spatial Epidemiology, Third Edition

Spatio-Temporal Methods in Environmental Epidemiology

CRC Press

This is a new edition of the classic monograph, published in 1983, that described those statistical methods that are used to analyse spatial data. This edition has been entirely updated with the latest developments in the analysis of spatial data which have grown to become a large area of concern in environmental and epidemiological research. There is a website connected with the volume that contains additional data sets and a new chapter on spatial epidemiology. It is appropriate for graduate level statisticians in various disciplines.

"The book fills a void in the literature and available software, providing a crucial link for students and professionals alike to engage in the analysis of spatial and spatio-temporal health data from a Bayesian perspective using R. The book emphasizes the use of MCMC via Nimble, BRugs, and CARBayes, but also includes INLA for comparative purposes. In addition, a wide range of packages useful in the analysis of geo-referenced spatial data are employed and code is provided. It will likely become a key reference for researchers and students from biostatistics, epidemiology, public health, and environmental science"--

This book is a collection of papers reflecting the latest advances in geographic research on health, disease, and well-being. It spans a wide range of topics, theoretical perspectives, and methodologies - including anti-racism, post-colonialism, spatial statistics, spatiotemporal modeling, political ecology, and social network analysis. Health issues in various regions of the world are addressed by interdisciplinary authors, who include scholars from epidemiology, medicine, public health, demography, and community studies. The book covers the major themes in this field such as health inequalities; environmental health; spatial analysis and modeling of disease; health care provision, access, and utilization; health and wellbeing; and global/transnational health and health issues in the global south. There is also a specially commissioned book review in addition to the chapters included in these six sections. Together, these chapters show cogently how geographic perspectives and methods can contribute in significant ways to advancing our understanding of the complex interactions between social and physical environments and health behaviors and outcomes. This book was published as a special issue of Annals of the Association of American Geographers.

Handbook of Spatial Epidemiology explains how to model epidemiological problems and improve inference about disease etiology from a geographical perspective. Top epidemiologists, geographers, and statisticians share interdisciplinary viewpoints on analyzing spatial data and space-time variations in disease incidences. These analyses can provide important information that leads to better decision making in public health. The first part of the book addresses general issues related to epidemiology, GIS, environmental studies, clustering, and ecological analysis. The second part presents basic statistical methods used in spatial epidemiology, including fundamental likelihood principles, Bayesian methods, and testing and nonparametric approaches. With a focus on special methods, the third part describes geostatistical models, splines, quantile regression, focused clustering, mixtures, multivariate methods, and much more. The final part examines special problems and application areas, such as residential history analysis, segregation, health services research, health surveys, infectious disease, veterinary topics, and health surveillance and clustering. Spatial epidemiology, also known as disease mapping, studies the geographical or spatial distribution of health outcomes. This handbook offers a wide-ranging overview of state-of-the-art approaches to determine the relationships between health and various risk factors, empowering researchers and policy makers to tackle public health problems.

Although the spatial dimension of ecosystem dynamics is now widely recognized, the specific mechanisms behind species patterning in space are still poorly understood and the corresponding theoretical framework is underdeveloped. Going beyond the classical Turing scenario of pattern formation, Spatiotemporal Patterns in Ecology and Epidemiology: Since the dawn of medical science, people have recognized connections between a change in the weather and the appearance of epidemic disease. With today's technology, some hope that it will be possible to build models for predicting the emergence and spread of many infectious diseases based on climate and weather forecasts. However, separating the effects of climate from other effects presents a tremendous scientific challenge. Can we use climate and weather forecasts to predict infectious disease outbreaks? Can the field of public health advance from "surveillance and response" to "prediction and prevention"? And perhaps the most important question of all: Can we predict how global warming will affect the emergence and transmission of infectious disease agents around the world? Under the Weather evaluates our current understanding of the linkages among climate, ecosystems, and infectious disease; it then goes a step further and outlines the research needed to improve our understanding of these linkages. The book also examines the potential for using climate forecasts and ecological observations to help predict infectious disease outbreaks, identifies the necessary components for an epidemic early warning system, and reviews lessons learned from the use of climate forecasts in other realms of human activity.

Handbook of Research on Geographic Information Systems Applications and Advancements

Analyzing and Modeling Spatial and Temporal Dynamics of Infectious Diseases

Disease Mapping

Bayesian Disease Mapping