Fluid Mechanics For Chemical Engineers Noel

The Chemical Engineer’s Practical Guide to Fluid Mechanics: Now Includes COMSOL Multiphysics 5 Since most chemical processing applications are conducted either partially or totally in the fluid phase, chemical engineers need mastery of fluid mechanics. Such knowledge is especially valuable in the biochemical, chemical, energy, fermentation, materials, mining, petroleum, pharmaceuticals, polymer, and waste-processing industries. Fluid Mechanics for Chemical Engineers: with Microfluidics, CFD, and COMSOL Multiphysics 5, Third Edition, systematically introduces fluid mechanics from the perspective of the chemical engineer who must understand actual physical behavior and solve real-world problems. Building on the book that earned Choice Magazine’s Outstanding Academic Title award, this edition also gives a comprehensive introduction to the popular COMSOL Multiphysics 5 software. This third edition contains extensive coverage of both microfluidics and computational fluid dynamics, systematically demonstrating CFD through detailed examples using COMSOL Multiphysics 5 and ANSYS Fluent. The chapter on turbulence now presents valuable CFD techniques to investigate practical situations such as turbulent mixing and recirculating flows. Part I offers a clear, succinct, easy-to-follow introduction to macroscopic fluid mechanics, including physical properties; hydrostatics; basic rate laws; and fundamental principles of flow through equipment. Part II turns to microscopic fluid mechanics: Differential equations of fluid mechanics Viscous-flow problems, some including polymer processing Laplace’s equation; irrotational and porous-media flows Nearly unidirectional flows, from boundary layers to lubrication, calendering, and thin-film applications Turbulent
flows, showing how the k-? method extends conventional mixing-length theory. Bubble motion, two-phase flow, and fluidization Non-Newtonian fluids, including inelastic and viscoelastic fluids Microfluidics and electrokinetic flow effects, including electroosmosis, electrophoresis, streaming potentials, and electroosmotic switching Computational fluid mechanics with ANSYS Fluent and COMSOL Multiphysics. Nearly 100 completely worked practical examples include 12 new COMSOL 5 examples: boundary layer flow, non-Newtonian flow, jet flow, die flow, lubrication, momentum diffusion, turbulent flow, and others. More than 300 end-of-chapter problems of varying complexity are presented, including several from University of Cambridge exams. The author covers all material needed for the fluid mechanics portion of the professional engineer’s exam. The author’s website (fmche.engin.umich.edu) provides additional notes, problem-solving tips, and errata. Register your product at informit.com/register for convenient access to downloads, updates, and corrections as they become available.

The book aims at providing to master and PhD students the basic knowledge in fluid mechanics for chemical engineers. Applications to mixing and reaction and to mechanical separation processes are addressed. The first part of the book presents the principles of fluid mechanics used by chemical engineers, with a focus on global theorems for describing the behavior of hydraulic systems. The second part deals with turbulence and its application for stirring, mixing, and chemical reaction. The third part addresses mechanical separation processes by considering the dynamics of particles in flow and the processes of filtration, fluidization, and centrifugation. The mechanics of granular media is finally discussed.

Fluid Mechanics for Chemical Engineers, third edition retains the characteristics that made this introductory text a success in prior editions. It is still a book that emphasizes material and
energy balances and maintains a practical orientation throughout. No more math is included than is required to understand the concepts presented. To meet the demands of today's market, the author has included many problems suitable for solution by computer. Two brand new chapters are included. The first, on mixing, augments the book's coverage of practical issues encountered in this field. The second, on computational fluid dynamics (CFD), shows students the connection between hand and computational fluid dynamics.

First published in 1975 as the third edition of a 1957 original, this book presents the fundamental ideas of fluid flow, viscosity, heat conduction, diffusion, the energy and momentum principles, and the method of dimensional analysis. These ideas are subsequently developed in terms of their important practical applications, such as flow in pipes and channels, pumps, compressors and heat exchangers. Later chapters deal with the equation of fluid motion, turbulence and the general equations of forced convection. The final section discusses special problems in process engineering, including compressible flow in pipes, solid particles in fluid flow, flow through packed beds, condensation and evaporation. This book will be of value to anyone with an interest the wider applications of fluid mechanics and heat transfer.

Momentum Transfer in Fluids provides information pertinent to fluid mechanics. This book discusses several topics related to the movement of fluids, including boundary-layer analysis, statistical treatment of turbulence, as well as laminar and turbulent shear-flow. Comprised of seven chapters, this book starts with an overview of the physical nature of momentum and describes the application of this concept to systems of variable weight, which are useful in the prediction of the physical behavior of fluids in motion. This text then explores the fundamental properties and the macroscopic aspects of turbulent flow. Other chapters present the significance and
utility of mixing length and other macroscopic turbulence parameters. This book discusses as well the prediction of the velocity and friction as functions of position in the flowing stream. The final chapter deals with the qualitative aspects of boundary flows for compressible and incompressible fluids. This book is a valuable resource for scientists and chemical engineers.

James O. Wilkes has updated his expert hands-on fluid mechanics tutorial with a complete introduction to the popular COMSOL Multiphysics 5.2 software package, and ten new COMSOL 5.2 examples. Building on the text that earned Choice Magazine's prestigious Outstanding Academic Titles award, Wilkes offers masterful coverage of key fluid mechanics topics including computing turbulent flows, bubble motion, two-phase flow, fluidization, microfluidics, electro-kinetic flow effects, and computational fluid dynamics. Throughout, he presents more than 300 problems of incrementally greater difficulty, helping students build mastery through realistic practice. Wilkes starts with a macroscopic approach, providing a solid foundation for sizing pumps and operating laboratory and field scale equipment. The first four chapters derive equations needed to size chemical plant equipment, including pipes in packed beds, pumping installation, fluid flow measurement, filtration, and cyclone separation. Next, he moves to a microscopic approach, introducing key principles for modeling more advanced systems and solving industry or graduate-level problems. These chapters start with a simple derivation of the Navier-Stokes equation (NSE), and then introduce assumptions for various flow geometries, helping students reduce equations for easy solution -- analytically, or numerically with COMSOL. Updated COMSOL examples include boundary layer flow, non-Newtonian flow, jet flow, lath flow, lubrication, momentum diffusion, flow through an orifice plate parallel plate flow, turbulent flow, and more.
An ideal textbook for civil and environmental, mechanical, and chemical engineers taking the required Introduction to Fluid Mechanics course, Fluid Mechanics for Civil and Environmental Engineers offers clear guidance and builds a firm real-world foundation using practical examples and problem sets. Each chapter begins with a statement of objectives, and includes practical examples to relate the theory to real-world engineering design challenges. The author places special emphasis on topics that are included in the Fundamentals of Engineering exam, and make the book more accessible by highlighting keywords and important concepts, including Mathcad algorithms, and providing chapter summaries of important concepts and equations.

The Structure and Rheology of Complex Fluids describes the microstructures of polymeric, colloidal, amphiphilic, and liquid crystalline liquids, and the relationship between microstructure and mechanical and flow properties. It provides illustrations, practical examples, and worked problems. This book can serve as both a textbook for a graduate course and a research monograph.

Chemical Engineering Division
Fluid Mechanics, Heat Transfer, and Mass Transfer
Fluid Mechanics for Chemical Engineers with Microfluidics and CFD

Hydrodynamics, Mass and Heat Transfer in Chemical Engineering
An Introduction to Fluid Mechanics
Solved Practical Problems in Fluid Mechanics
Lattice Boltzmann Modeling for Chemical Engineering
Fluid Mechanics for Engineers

"Why Study Fluid Mechanics? 1.1 Getting Motivated Flows are beautiful and complex."
A swollen creek tumbles over rocks and through crevasses, swirling and foaming. A child plays with sticky tafy, stretching and reshaping the candy as she pulls it and twist it in various ways. Both the water and the tafy are fluids, and their motions are governed by the laws of nature. Our goal is to introduce the reader to the analysis of flows using the laws of physics and the language of mathematics. On mastering this material, the reader becomes able to harness flow to practical ends or to create beauty through fluid design. In this text we delve deeply into the mathematical analysis of flows, but before beginning, it is reasonable to ask if it is necessary to make this significant mathematical effort. After all, we can appreciate a flowing stream without understanding why it behaves as it does. We can also operate machines that rely on fluid behavior – drive a car for example – without understanding the fluid dynamics of the engine, and we can even repair and maintain engines, piping networks, and other complex systems without having studied the mathematics of flow. What is the purpose, then, of learning to mathematically describe fluid
practical: knowing the patterns fluids form and why they are formed, and knowing the stresses fluids generate and why they are generated is essential to designing and optimizing modern systems and devices. While the ancients designed wells and irrigation systems without calculations, we can avoid the wastefulness and tediousness of the trial-and-error process by using mathematical models"--

Most of the shaping in the manufacture of polymeric objects is carried out in the melt state, as it is a substantial part of the physical property development. Melt processing involves an interplay between fluid mechanics and heat transfer in rheologically complex liquids, and taken as a whole it is a nice example of the importance of coupled transport processes. This book is on the underlying foundations of polymer melt processing, which can be derived from relatively straightforward ideas in fluid mechanics and heat transfer; the level is that of an advanced undergraduate or beginning graduate course, and the material can serve as the text for a course in polymer processing or for a second course in transport processes.
For undergraduates.
**********Text Available as of
Fluid Mechanics for Chemical Engineers, third edition retains the characteristics that made this introductory text a success in prior editions. It is still a book that emphasizes material and energy balances and maintains a practical orientation throughout. No more math is included than is required to understand the concepts presented. To meet the demands of today's market, the author has included many problems suitable for solution by computer. Three brand new chapters are included. Chapter 15 on Two- and Three Dimensional Fluid Mechanics, Chapter 19 on Mixing, and Chapter 20 on Computational Fluid Dynamics (CFD).

This broad-based book covers the three major areas of Chemical Engineering. Most of the books in the market involve one of the individual areas, namely, Fluid Mechanics, Heat Transfer or Mass Transfer, rather than all the three. This book presents this material in a single source. This avoids the user having to refer to a number of books to obtain information. Most published books covering all the three areas in a single source emphasize theory rather than practical issues. This book is written with emphasis on practice with brief theoretical concepts in the
form of questions and answers, not adopting stereo-typed question-answer approach practiced in certain books in the market, bridging the two areas of theory and practice with respect to the core areas of chemical engineering. Most parts of the book are easily understandable by those who are not experts in the field. Fluid Mechanics chapters include basics on non-Newtonian systems which, for instance find importance in polymer and food processing, flow through piping, flow measurement, pumps, mixing technology and fluidization and two phase flow. For example it covers types of pumps and valves, membranes and areas of their use, different equipment commonly used in chemical industry and their merits and drawbacks. Heat Transfer chapters cover the basics involved in conduction, convection and radiation, with emphasis on insulation, heat exchangers, evaporators, condensers, reboilers and fired heaters. Design methods, performance, operational issues and maintenance problems are highlighted. Topics such as heat pipes, heat pumps, heat tracing, steam traps, refrigeration, cooling of electronic devices, NOx control find place in the book. Mass transfer chapters cover basics such as diffusion, theories, analogies,
mass transfer coefficients and mass transfer with chemical reaction, equipment such as tray and packed columns, column internals including structural packings, design, operational and installation issues, drums and separators are discussed in good detail. Absorption, distillation, extraction and leaching with applications and design methods, including emerging practices involving Divided Wall and Petluk column arrangements, multicomponent separations, supercritical solvent extraction find place in the book. Presents the fundamentals of chemical engineering fluid mechanics with an emphasis on valid and practical approximations in modeling.

We inhabit a world of fluids, including air (a gas), water (a liquid), steam (vapour) and the numerous natural and synthetic fluids which are essential to modern-day life. Fluid mechanics concerns the way fluids flow in response to imposed stresses. The subject plays a central role in the education of students of mechanical engineering, as well as chemical engineers, aeronautical and aerospace engineers, and civil engineers. This textbook includes numerous examples of practical applications of the theoretical ideas presented, such as calculating the
thrust of a jet engine, the shock- and expansion-wave patterns for supersonic flow over a diamond-shaped aerofoil, the forces created by liquid flow through a pipe bend and/or junction, and the power output of a gas turbine. The first ten chapters of the book are suitable for first-year undergraduates. The latter half covers material suitable for fluid-mechanics courses for upper-level students. Although knowledge of calculus is essential, this text focuses on the underlying physics. The book emphasizes the role of dimensions and dimensional analysis, and includes more material on the flow of non-Newtonian liquids than is usual in a general book on fluid mechanics -- a reminder that the majority of synthetic liquids are non-Newtonian in character.

The Chemical Engineer's Practical Guide to Contemporary Fluid Mechanics Since most chemical processing applications are conducted either partially or totally in the fluid phase, chemical engineers need a strong understanding of fluid mechanics. Such knowledge is especially valuable for solving problems in the biochemical, chemical, energy, fermentation, materials, mining, petroleum, pharmaceuticals, polymer, and waste-processing industries.
Fluid Mechanics for Chemical Engineers, Second Edition, with Microfluidics and CFD, systematically introduces fluid mechanics from the perspective of the chemical engineer who must understand actual physical behavior and solve real-world problems. Building on a first edition that earned Choice Magazine's Outstanding Academic Title award, this edition has been thoroughly updated to reflect the field's latest advances. This second edition contains extensive new coverage of both microfluidics and computational fluid dynamics, systematically demonstrating CFD through detailed examples using FlowLab and COMSOL Multiphysics. The chapter on turbulence has been extensively revised to address more complex and realistic challenges, including turbulent mixing and recirculating flows. Part I offers a clear, succinct, easy-to-follow introduction to macroscopic fluid mechanics, including physical properties; hydrostatics; basic rate laws for mass, energy, and momentum; and the fundamental principles of flow through pumps, pipes, and other equipment. Part II turns to microscopic fluid mechanics, which covers Differential equations of fluid mechanics Viscous-flow problems, some including
polymer processing Laplace's equation, irrotational, and porous-media flows
Nearly unidirectional flows, from boundary layers to lubrication, calendering, and thin-film applications Turbulent flows, showing how the k/? method extends conventional mixing-length theory Bubble motion, two-phase flow, and fluidization Non-Newtonian fluids, including inelastic and viscoelastic fluids Microfluidics and electrokinetic flow effects including electroosmosis, electrophoresis, streaming potentials, and electroosmotic switching Computational fluid mechanics with FlowLab and COMSOL Multiphysics Fluid Mechanics for Chemical Engineers, Second Edition, with Microfluidics and CFD, includes 83 completely worked practical examples, several of which involve FlowLab and COMSOL Multiphysics. There are also 330 end-of-chapter problems of varying complexity, including several from the University of Cambridge chemical engineering examinations. The author covers all the material needed for the fluid mechanics portion of the Professional Engineer's examination. The author's Web site, www.engin.umich.edu/~fmche/, provides additional notes on individual chapters, problem-solving tips, errata, and more.
Lattice Boltzmann Modeling for Chemical Engineering, Volume 56 in the Advances in Chemical Engineering series, highlights new advances in the field, with this new volume presenting interesting chapters on Simulations of homogeneous and heterogeneous chemical reactions, LBM for 3D Chemical Reactors, LBM Simulations of PEM fuel cells, LBM for separation processes, LBM for two-phase flow (bio)reactors, and more. Provides the authority and expertise of leading contributors from an international board of authors.

Presents the latest release in the Advances in Chemical Engineering series. Includes the latest information on Lattice Boltzmann Modeling for Chemical Engineering.

An applications-oriented introduction to process fluid mechanics. Provides an orderly treatment of the essentials of both the macro and micro problems of fluid mechanics. Advanced Transport Phenomena is ideal as a graduate textbook. It contains a detailed discussion of modern analytic methods for the solution of fluid mechanics and heat and mass...
transfer problems, focusing on approximations based on
scaling and asymptotic methods, beginning with the derivation
of basic equations and boundary conditions and concluding
with linear stability theory. Also covered are unidirectional
flows, lubrication and thin-film theory, creeping flows,
boundary layer theory, and convective heat and mass transport
at high and low Reynolds numbers. The emphasis is on basic
physics, scaling and nondimensionalization, and
approximations that can be used to obtain solutions that are
due either to geometric simplifications, or large or small
values of dimensionless parameters. The author emphasizes
setting up problems and extracting as much information as
possible short of obtaining detailed solutions of differential
equations. The book also focuses on the solutions of
representative problems. This reflects the book's goal of
teaching readers to think about the solution of transport
problems.
Computational fluid dynamics, CFD, has become an
indispensable tool for many engineers. This book gives an
introduction to CFD simulations of turbulence, mixing,
reaction, combustion and multiphase flows. The emphasis on
understanding the physics of these flows helps the engineer to
select appropriate models to obtain reliable simulations.
Besides presenting the equations involved, the basics and
limitations of the models are explained and discussed. The
book combined with tutorials, project and power-point lecture
notes (all available for download) forms a complete course.
The reader is given hands-on experience of drawing, meshing
and simulation. The tutorials cover flow and reactions inside a
porous catalyst, combustion in turbulent non-premixed flow,
and multiphase simulation of evaporation spray respectively.
The project deals with design of an industrial-scale selective catalytic reduction process and allows the reader to explore various design improvements and apply best practice guidelines in the CFD simulations. This book teaches the fundamentals of fluid flow by including both theory and the applications of fluid flow in chemical engineering. It puts fluid flow in the context of other transport phenomena such as mass transfer and heat transfer, while covering the basics, from elementary flow mechanics to the law of conservation. The book then examines the applications of fluid flow, from laminar flow to filtration and ventilization. It closes with a discussion of special topics related to fluid flow, including environmental concerns and the economic reality of fluid flow applications.

While various software packages have become quite useful for performing unit operations and other kinds of processes in chemical engineering, the fundamental theory and methods of calculation must also be understood in order to effectively test the validity of these packages and verify the results. Computer Methods in Chemical Engineering presents the most commonly used simulation software, along with the theory involved. It covers chemical engineering thermodynamics, fluid mechanics, material and energy balances, mass transfer operations, reactor design, and computer applications in chemical engineering. Through this book, students learn: What chemical engineers do The functions and theoretical background of basic chemical engineering unit operations How to simulate chemical processes using software packages How to size chemical process units manually and with software How to fit experimental data How to solve linear and nonlinear algebraic equations as well as ordinary differential
equations Along with exercises and references, each chapter contains a theoretical description of process units followed by numerous examples that are solved step by step via hand calculations and computer simulation using Hysys/Unisim, PRO/II, Aspen Plus, and SuperPro Designer. Adhering to the Accreditation Board for Engineering and Technology (ABET) criteria, the book gives students the tools needed to solve real problems involving thermodynamics and fluid-phase equilibria, fluid flow, material and energy balances, heat exchangers, reactor design, distillation, absorption, and liquid–liquid extraction.

Hydrodynamics, Mass and Heat Transfer in Chemical Engineering contains a concise and systematic exposition of fundamental problems of hydrodynamics, heat and mass transfer, and physicochemical hydrodynamics, which constitute the theoretical basis of chemical engineering in science. Areas covered include: fluid flows; processes of chemical engineering; mass and heat transfer in plane channels, tubes and fluid films; problems of mass and heat transfer; the motion and mass exchange of power-law and viscoplastic fluids through tubes, channels, and films; and the basic concepts and properties of very specific technological media, namely foam systems. Topics are arranged in increasing order of difficulty, with each section beginning with a brief physical and mathematical statement of the problem considered, followed by final results, usually given for the desired variables in the form of final relationships and tables. "This book presents an introduction to fluid mechanics for undergraduate chemical engineering students. Throughout the text, emphasis is placed on the connection between physical reality and the mathematical models of reality, which we
manipulate. The book is divided into four sections. Section I, preliminaries, provides background for the study of flowing fluids. Section II discusses flows that are practically one-dimensional or can be treated as such. Section III discusses some other topics that can be viewed by the methods of one-dimensional fluid mechanics. Section IV introduces the student to two- and three-dimensional fluid mechanics"--

Fluid Mechanics for Chemical Engineering
With Applications in Chemical and Mechanical Process Engineering
An Introduction to Fluid Mechanics and Heat Transfer
Computational Fluid Dynamics for Engineers
Foundations in Fluid Mechanics and Heat Transfer with Microfluidics, CFD, and COMSOL Multiphysics 5
Process Fluid Mechanics
Introduction to Practical Fluid Flow
Fluid Mechanics for Chemical Engineers with Engineering Subscription Card

This book provides readers with the most current, accurate, and practical fluid mechanics related applications that the practicing BS level engineer needs today in the chemical and related industries, in addition to a fundamental understanding of these applications based upon sound fundamental basic scientific principles. The emphasis remains on problem solving, and the new edition includes many more examples.

The term 'transport phenomena' describes the fundamental processes of momentum,
energy, and mass transfer. This text provides a thorough discussion of transport phenomena, laying the foundation for understanding a wide variety of operations used by chemical engineers. The book is arranged in three parallel parts covering the major topics of momentum, energy, and mass transfer. Each part begins with the theory, followed by illustrations of the way the theory can be used to obtain fairly complete solutions, and concludes with the four most common types of averaging used to obtain approximate solutions. A broad range of technologically important examples, as well as numerous exercises, are provided throughout the text. Based on the author's extensive teaching experience, a suggested lecture outline is also included. This book is intended for first-year graduate engineering students; it will be an equally useful reference for researchers in this field.

Outlines the concepts of chemical engineering so that non-chemical engineers can interface with and understand basic chemical engineering concepts. Overviews the difference between laboratory and industrial scale practice of chemistry, consequences of mistakes, and approaches needed to scale a lab reaction process to
an operating scale Covers basics of chemical reaction engineering, mass, energy, and fluid energy balances, how economics are scaled, and the nature of various types of flow sheets and how they are developed vs. time of a project Details the basics of fluid flow and transport, how fluid flow is characterized and explains the difference between positive displacement and centrifugal pumps along with their limitations and safety aspects of these differences Reviews the importance and approaches to controlling chemical processes and the safety aspects of controlling chemical processes, Reviews the important chemical engineering design aspects of unit operations including distillation, absorption and stripping, adsorption, evaporation and crystallization, drying and solids handling, polymer manufacture, and the basics of tank and agitation system design Contains Fluid Flow Topics Relevant to Every EngineerBased on the principle that many students learn more effectively by using solved problems, Solved Practical Problems in Fluid Mechanics presents a series of worked examples relating fluid flow concepts to a range of engineering applications. This text integrates simple
mathematical approaches tha
Fluid Mechanics for Chemical
Engineering

Suitable for undergraduates, postgraduates
and professionals, this is a comprehensive
text on physical and chemical equilibrium.
De Nevers is also the author of Fluid
Mechanics for Chemical Engineers.
Designed for undergraduate and first-year
courses in Fluid Mechanics, this text
consists of two parts four chapters on
macroscopic or relatively large-scale
phenomena, followed by eight chapters on
microscopic or relatively small-scale
phenomena.
The contents of this book covers the
material required in the Fluid Mechanics
Graduate Core Course (MEEN-621) and in
Advanced Fluid Mechanics, a Ph. D-level
elective course (MEEN-622), both of which
I have been teaching at Texas A&M
University for the past two decades. While
there are numerous undergraduate fluid
mechanics texts on the market for
engineering students and instructors to
choose from, there are only limited texts
that comprehensively address the
particular needs of graduate engineering
fluid mechanics courses. To complement the
lecture materials, the instructors more
often recommend several texts, each of
which treats special topics of fluid mechanics. This circumstance and the need to have a textbook that covers the materials needed in the above courses gave the impetus to provide the graduate engineering community with a coherent textbook that comprehensively addresses their needs for an advanced fluid mechanics text. Although this textbook is primarily aimed at mechanical engineering students, it is equally suitable for aerospace engineering, civil engineering, other engineering disciplines, and especially those practicing professionals who perform CFD-simulation on a routine basis and would like to know more about the underlying physics of the commercial codes they use. Furthermore, it is suitable for self study, provided that the reader has a sufficient knowledge of calculus and differential equations. In the past, because of the lack of advanced computational capability, the subject of fluid mechanics was artificially subdivided into inviscid, viscous (laminar, turbulent), incompressible, compressible, subsonic, supersonic and hypersonic flows.

FLUID MECH CHEM ENGS_c2
Polymer Melt Processing
Fluid Mechanics and Convective Transport
This is a collection of problems and solutions in fluid mechanics for students of all engineering disciplines. The text is intended to support undergraduate courses and be useful to academic tutors in supervising design projects. Introduction to Practical Fluid Flow provides information on the solution of practical fluid flow and fluid transportation problems through the application of fluid dynamics. Emphasising the solution of practical operating and design problems, the text concentrates on computer-based methods throughout, in keeping with trends in engineering. With a focus on the flow of slurries and non-Newtonian fluids, it will be useful for and engineering students who have to deal with practical fluid flow problems. Emphasises flow of slurries and Non-Newtonian fluids. Covers the application of fluid dynamics to the solution of practical fluid flow and fluid transportation problems.

Fluid and Particle Mechanics provides information pertinent to hydraulics or fluid mechanics. This book discusses the properties and behavior of liquids and gases in motion and at rest. Organized into nine chapters, this
book begins with an overview of the science of fluid mechanics that is subdivided accordingly into two main branches, namely, fluid statics and fluid dynamics. This text then examines the flowmeter devices used for the measurement of flow of liquids and gases. Other chapters consider the principle of resistance in open channel flow, which is based on improper application of the Torricellian law of efflux. This book discusses as well the use of centrifugal pumps for exchanging energy between a mechanical system and a liquid. The final chapter deals with the theory of settling, which finds an extensive application in several industrially important processes. This book is a valuable resource for chemical engineers, students, and researchers.

Explains how fundamental principles underlying the behaviour of fluids are applied systematically to the solution of practical engineering problems. Current information and state-of-the-art analytical methods are offered, and the work provides early coverage of dimensional analysis and scale-up.

Chemical Engineering for Non-Chemical Engineers
Fluid Flow for the Practicing Chemical Engineer
Physical and Chemical Equilibrium for Chemical Engineers
Momentum Transfer in Fluids
Solutions Manual for Fluid Mechanics for Chemical Engineers
Chemical Engineering Fluid Mechanics
Fluid Mechanics for Chemical Engineers with